Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)

As a National Cancer Institute (NCI)-designated Comprehensive Cancer Center, a core part of our mission is to educate patients and the community about cancer. The following summary is trusted information from the NCI.

General Information About Childhood Brain and Spinal Cord Tumors

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2002, childhood cancer mortality decreased by more than 50%. Childhood and adolescent cancer survivors require close follow-up because cancer therapy side effects may persist or develop months or years after treatment. Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors.

Primary brain tumors are a diverse group of diseases that together constitute the most common solid tumor of childhood. Brain tumors are classified according to histology, but tumor location and extent of spread are also important factors that affect treatment and prognosis. Immunohistochemical analysis, cytogenetic and molecular genetic findings, and measures of proliferative activity are increasingly used in tumor diagnosis and classification.

Incidence

Primary central nervous system tumors are a diverse group of diseases that together constitute the most common solid tumor in childhood. Between 2,500 and 3,500 children are diagnosed in the United States each year.

References:
  • Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010.

Classification of Central Nervous System Tumors

The classification of childhood central nervous system (CNS) tumors is based on histology and location. Tumors are classically categorized as infratentorial, supratentorial, parasellar, or spinal. Immunohistochemical analysis, cytogenetic and molecular genetic findings, and measures of proliferative activity are increasingly used in tumor diagnosis and classification and will likely affect classification and nomenclature in the future.

Primary CNS spinal cord tumors comprise approximately 1% to 2% of all childhood CNS tumors. The classification of spinal cord tumors is based on histopathologic characteristics of the tumor and does not differ from that of primary brain tumors.

Infratentorial (posterior fossa) tumors include the following:

  1. Cerebellar astrocytomas (most commonly pilocytic, but also fibrillary and less frequently, high grade).
  2. Medulloblastomas (including classic, desmoplastic/nodular, extensive nodularity, anaplastic, or large cell variants).
  3. Ependymomas (cellular, papillary, clear cell, tanycytic, or anaplastic).
  4. Brain stem gliomas (typically diffuse intrinsic pontine gliomas and focal, tectal, and exophytic cervicomedullary gliomas are most frequently pilocytic astrocytomas).
  5. Atypical teratoid/rhabdoid tumors.
  6. Choroid plexus tumors (papillomas and carcinomas).
  7. Rosette-forming glioneuronal tumors of the fourth ventricle.

Supratentorial tumors include the following:

  1. Low-grade cerebral hemispheric astrocytomas (grade I [pilocytic] astrocytomas or grade II [diffuse] astrocytomas).
  2. High-grade or malignant astrocytomas (anaplastic astrocytomas and glioblastoma [grade III or grade IV]).
  3. Mixed gliomas (low- or high-grade).
  4. Oligodendrogliomas (low- or high-grade).
  5. Primitive neuroectodermal tumors (PNETs) (cerebral neuroblastomas, pineoblastomas, and ependymoblastomas).
  6. Atypical teratoid/rhabdoid tumors.
  7. Ependymomas (cellular or anaplastic).
  8. Meningiomas (grades I, II, and III).
  9. Choroid plexus tumors (papillomas and carcinomas).
  10. Tumors of the pineal region (pineocytomas, pineoblastomas, pineal parenchymal tumors of intermediate differentiation, and papillary tumors of the pineal region), and germ cell tumors.
  11. Neuronal and mixed neuronal glial tumors (gangliogliomas, desmoplastic infantile astrocytoma/gangliogliomas, dysembryoplastic neuroepithelial tumors, and papillary glioneuronal tumors).
  12. Other low-grade gliomas (including subependymal giant cell tumors and pleomorphic xanthoastrocytoma).
  13. Metastasis (rare) from extraneural malignancies.

Parasellar tumors include the following:

  1. Craniopharyngiomas.
  2. Diencephalic astrocytomas (central tumors involving the chiasm, hypothalamus, and/or thalamus) that are generally low-grade (including astrocytomas, grade I [pilocytic] or grade II [diffuse]).
  3. Germ cell tumors (germinomas or nongerminomatous).

Spinal cord tumors include the following:

  1. Low-grade cerebral hemispheric astrocytomas (grade I [pilocytic] astrocytomas or grade II [diffuse] astrocytomas).
  2. High-grade or malignant astrocytomas (anaplastic astrocytomas and glioblastoma [grade III or grade IV]).
  3. Gangliogliomas.
  4. Ependymomas (often myxopapillary).
References:
  • Louis DN, Ohgaki H, Wiestler OD, et al., eds.: WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon, France: IARC Press, 2007.

General Approach to Care for Children with Brain and Spinal Cord Tumors

Important concepts that should be understood by those treating and caring for a child who has a brain tumor or spinal cord tumor include the following:

  1. The cause of most childhood brain tumors remains unknown.
  2. Selection of an appropriate therapy can only occur if the correct diagnosis is made and the stage of the disease is accurately determined.
  3. Children with primary brain or spinal cord tumors represent a major therapy challenge that, for optimal results, requires the coordinated efforts of pediatric specialists in fields such as neurosurgery, neuropathology, radiation oncology, pediatric oncology, neuro-oncology, neurology, rehabilitation, neuroradiology, endocrinology, and psychology, who have special expertise in the care of patients with these diseases. For example, radiation therapy of pediatric brain tumors is technically demanding and should be performed in centers that have experience in this area.
  4. For most childhood brain and spinal cord tumors, the optimal treatment regimen has not been determined. Children who have brain and spinal cord tumors should be considered for enrollment in a clinical trial when an appropriate study is available. Such clinical trials are being carried out by institutions and cooperative groups. Survival of childhood cancer has advanced as a result of clinical trials that have attempted to improve upon the best accepted therapy available. Clinical trials in pediatrics are designed to compare new therapy with therapy that is currently accepted as standard. This comparison may be done in a randomized study of two treatment arms or by evaluating a single new treatment and then comparing the results with those previously obtained from existing therapy. Information about ongoing clinical trials is available from the NCI Web site.
  5. While more than 70% of children diagnosed with brain tumors will survive for more than 5 years after diagnosis, survival rates are wide-ranging depending on tumor type and stage. Long-term sequelae related to the initial presence of the tumor and subsequent treatment are common. Debilitating effects on growth and neurologic development have frequently been observed after radiation therapy, especially in younger children. Secondary tumors have increasingly been diagnosed in long-term survivors. For this reason, the role of chemotherapy in allowing a delay or reduction in the administration of radiation therapy is under study, and preliminary results suggest that chemotherapy can be used to delay, limit, and sometimes obviate, the need for radiation therapy in children with benign and malignant lesions. Long-term management of these patients is complex and requires a multidisciplinary approach. (Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information about possible long-term or late effects.)
  6. Guidelines for pediatric cancer centers and their role in the treatment of pediatric patients with cancer have been outlined by the American Academy of Pediatrics.
References:
  • Fisher JL, Schwartzbaum JA, Wrensch M, et al.: Epidemiology of brain tumors. Neurol Clin 25 (4): 867-90, vii, 2007.
  • Blaney SM, Haas-Kogan D, Young Poussaint T, et al.: Gliomas, ependymomas, and other nonembryonal tumors of the central nervous system. In: Pizzo PA, Poplack DG, eds.: Principles and Practice of Pediatric Oncology. 6th ed. Philadelphia, Pa: Lippincott Williams and Wilkins, 2011, pp 717-771.
  • Pollack IF: Brain tumors in children. N Engl J Med 331 (22): 1500-7, 1994.
  • Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010.
  • Reimers TS, Mortensen EL, Nysom K, et al.: Health-related quality of life in long-term survivors of childhood brain tumors. Pediatr Blood Cancer 53 (6): 1086-91, 2009.
  • Iuvone L, Peruzzi L, Colosimo C, et al.: Pretreatment neuropsychological deficits in children with brain tumors. Neuro Oncol 13 (5): 517-24, 2011.
  • Ris MD, Packer R, Goldwein J, et al.: Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J Clin Oncol 19 (15): 3470-6, 2001.
  • Johnson DL, McCabe MA, Nicholson HS, et al.: Quality of long-term survival in young children with medulloblastoma. J Neurosurg 80 (6): 1004-10, 1994.
  • Packer RJ, Sutton LN, Goldwein JW, et al.: Improved survival with the use of adjuvant chemotherapy in the treatment of medulloblastoma. J Neurosurg 74 (3): 433-40, 1991.
  • Jenkin D: Long-term survival of children with brain tumors. Oncology (Huntingt) 10 (5): 715-9; discussion 720, 722, 728, 1996.
  • Duffner PK, Horowitz ME, Krischer JP, et al.: Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med 328 (24): 1725-31, 1993.
  • Packer RJ, Lange B, Ater J, et al.: Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol 11 (5): 850-6, 1993.
  • Mason WP, Grovas A, Halpern S, et al.: Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J Clin Oncol 16 (1): 210-21, 1998.
  • Guidelines for the pediatric cancer center and role of such centers in diagnosis and treatment. American Academy of Pediatrics Section Statement Section on Hematology/Oncology. Pediatrics 99 (1): 139-41, 1997.

Stage Information and Treatment of Newly Diagnosed and Recurrent Childhood Brain Tumors

Presently, there is no uniformly accepted staging system for most childhood brain tumors. These tumors are classified and treated based on their histology and location within the brain (see Table below). However, with advances in molecular data, it is conceivable that genomic factors will refine classification approaches for certain groups of tumors, such as medulloblastomas and low-grade gliomas.

Newly Diagnosed or Recurrent Tumor Type and Its Related PDQ Treatment SummaryTumor TypePathologic SubtypeRelated PDQ Treatment SummaryCNS = central nervous system; WHO = World Health Organization.Astrocytomas and Other Tumors of Glial OriginLow-Grade AstrocytomasDiffuse fibrillary astrocytomaChildhood Astrocytomas TreatmentGemistocytic astrocytomaOligoastrocytomaOligodendroglioma Pilocytic astrocytomaPilomyxoid astrocytomaPleomorphic xanthoastrocytomaProtoplasmic astrocytomaSubependymal giant cell astrocytoma – High-Grade AstrocytomasAnaplastic astrocytomaChildhood Astrocytomas TreatmentAnaplastic oligoastrocytomaAnaplastic oligodendrogliomaGiant cell glioblastomaGlioblastomaGliomatosis cerebriGliosarcomaBrain Stem GliomaDiffuse intrinsic pontine glioma Childhood Brain Stem Glioma TreatmentFocal or low-grade brain stem glioma CNS Embryonal TumorsMedulloblastomasAnaplasticChildhood CNS Embryonal Tumors TreatmentClassicDesmoplastic/nodularLarge cell Medulloblastoma with extensive nodularity – CNS Primitive Neuroectodermal Tumors (PNETs)CNS ganglioneuroblastomaCNS neuroblastomaEpendymoblastomaMedulloepithelioma– Pineal Parenchymal TumorsPineoblastoma– CNS Atypical Teratoid/Rhabdoid TumorChildhood CNS Atypical Teratoid/Rhabdoid Tumor TreatmentCNS Germ Cell TumorsGerminomasChildhood CNS Germ Cell Tumors TreatmentTeratomasImmature teratomaMature teratomaTeratoma with malignant transformation– Non-Germinomatous Germ Cell TumorsChoriocarcinoma Embryonal carcinomaMixed germ cell tumorYolk sac tumorCraniopharyngiomaChildhood Craniopharyngioma TreatmentEpendymomaSubependymoma (WHO Grade I)Childhood Ependymoma TreatmentMyxopapillary ependymoma (WHO Grade I)Ependymoma (WHO Grade II)Anaplastic ependymoma (WHO Grade III) Tumors of the Choroid Plexus

Recurrence is not uncommon in both low-grade and malignant childhood brain tumors and may occur many years after initial treatment. Disease may occur at the primary tumor site or, especially in malignant tumors, at noncontiguous central nervous system (CNS) sites. Systemic relapse is rare but may occur. At time of recurrence, a complete evaluation for extent of relapse is indicated for all malignant tumors and, at times, for lower-grade lesions. Biopsy or surgical re-resection may be necessary for confirmation of relapse; other entities, such as secondary tumor and treatment-related brain necrosis, may be clinically indistinguishable from tumor recurrence. The determination of the need for surgical intervention must be individualized based on the initial tumor type, the length of time between initial treatment and the reappearance of the lesion, and the clinical picture.

Early-phase therapeutic trials may be available for selected patients via Children's Oncology Group phase I institutions, the Pediatric Brain Tumor Consortium, or other entities.

References:
  • Northcott PA, Shih DJ, Peacock J, et al.: Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488 (7409): 49-56, 2012.
  • Kool M, Korshunov A, Remke M, et al.: Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123 (4): 473-84, 2012.
  • Jones DT, Kocialkowski S, Liu L, et al.: Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68 (21): 8673-7, 2008.
  • Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118 (5): 1739-49, 2008.

Stage Information and Treatment of Newly Diagnosed and Recurrent Childhood Spinal Cord Tumors

There is no uniformly accepted staging system for childhood primary spinal cord tumors. These tumors are classified and treated based on their location within the spinal cord and histology. Refer to the following PDQ summaries for more information on the staging and treatment of newly diagnosed and recurrent childhood spinal cord tumors:



Appointments

Or call 1-888-824-0200